A Note on Random Minimum Length Spanning Trees

نویسندگان

  • Alan M. Frieze
  • Miklós Ruszinkó
  • Lubos Thoma
چکیده

Consider a connected r-regular n-vertex graph G with random independent edge lengths, each uniformly distributed on [0, 1]. Let mst(G) be the expected length of a minimum spanning tree. We show in this paper that if G is sufficiently highly edge connected then the expected length of a minimum spanning tree is ∼ nr ζ(3). If we omit the edge connectivity condition, then it is at most ∼ nr (ζ(3) + 1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Random Minimum Length Spanning Trees

Suppose that we are given a complete graph K n on n vertices together with lengths on the edges which are independent identically distributed non-negative random variables. Suppose that their common distribution function F satisfies F(0) =0, F is differentiable from the right at zero and D = F~. (0)>0. Let X denote a random variable with this distribution. Let L~ denote the (random) length of t...

متن کامل

Random Minimum Length Spanning Trees in Regular Graphs

Consider a connected r-regular n-vertex graph G with random independent edge lengths, each uniformly distributed on (0,1). Let mst(G) be the expected length of a minimum spanning tree. We show that mst(G) can be estimated quite accurately under two distinct circumstances. Firstly, if r is large and G has a modest edge expansion property then mst(G) ∼ r ζ(3), where ζ(3) = ∑∞ j=1 j −3 ∼ 1.202. Se...

متن کامل

Partition functions of discrete coalescents: from Cayley’s formula to Frieze’s ζ(3) limit theorem

In these expository notes, we describe some features of the multiplicative coalescent and its connection with random graphs and minimum spanning trees. We use Pitman’s proof [13] of Cayley’s formula, which proceeds via a calculation of the partition function of the additive coalescent, as motivation and as a launchpad. We define a random variable which may reasonably be called the empirical par...

متن کامل

Encoding Bounded-Diameter Spanning Trees with Permutations and with Random Keys

Permutations of vertices can represent constrained spanning trees for evolutionary search via a decoder based on Prim’s algorithm, and random keys can represent permutations. Though we might expect that random keys, with an additional level of indirection, would provide inferior performance compared with permutations, a genetic algorithm that encodes spanning trees with random keys is as effect...

متن کامل

A note on maximizing the minimum voter satisfaction on spanning trees

A fair spanning tree of a graph maximizes the minimum satisfaction among individuals given their preferences over the edges of the graph. In this note we answer an open question about the computational complexity of determining fair spanning trees raised in Darmann et al. [8]. It is shown that the maximin voter satisfaction problem under choose-t-election is NP-complete for each fixed t ≥ 2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2000